
EGC220
Class Notes
4/28/2023

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

Flip-Flop Excitation Tables

Q(t) Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1

Q(t) Q(t+1) T
0 0 0
0 1 1
1 0 1
1 1 0

PRESENT
STATE

NEXT
STATE

J K

Q(t) Q(t+1)
0 0 0 x
0 1 1 x
1 0 x 1
1 1 x 0

PRESENT
STATE

NEXT
STATE

S R

Q(t) Q(t+1)
0 0 0 X
0 1 1 0
1 0 0 1
1 1 x 0

outputs
yk = fk(S)

inputs
x0...xn

Comb.
Logic

n

Flip-
Flops

Comb.
Logic

D Q
n

CLK

S+

inputs
x0...xn

present state S

• Mealy FSM:

S

Comb.
Logic

CLK

Flip-
Flops

Comb.
LogicD Q

S+

n

n

outputs
yk = fk(S, x0...xn)

direct combinational path!

Moore Vs Mealy FSMs: different output generation
• Moore FSM:

next state

1. Evaluate a | b but defer assignment of x
2. Evaluate a^b^c but defer assignment of y
3. Evaluate b&(~c) but defer assignment of z

Blocking vs. Nonblocking Assignments

• Nonblocking assignment: all assignments deferred until all
right-hand sides have been evaluated (end of simulation
timestep)

• Sometimes, as above, both produce the same result.
Sometimes, not!

• Verilog supports two types of assignments within always
blocks, with subtly different behaviors.

• Blocking assignment: evaluation and assignment are immediate
always @ (a or b or c)
begin

x = a | b; 1. Evaluate a | b, assign result to x
y = a ^ b ^ c; 2. Evaluate a^b^c, assign result to y
z = b & ~c; 3. Evaluate b&(~c), assign result to z

end

always @ (a or b or c)
begin
x.<= a | b;
y.<= a ^ b ^ c;
z <= b & ~c;

end 4. Assign x, y, and z with their new values

Finite State Machines Example
 State diagrams are representations of Finite

State Machines (FSM)
Mealy FSM
Output depends on input and state
Output is not synchronized with clock can

have temporarily unstable output
Moore FSM
Output depends only on state

Mealy FSM

Moore
FSM

Problem 1
Using D flip-flops, design a Moore based sequence detector with one input and one output, which would
generate an output of 1 only when the input sequence is 101. Assume no overlapping.

Problem 1
Using D flip-flops, design a Moore based sequence detector with one input and one output, which would
generate an output of 1 only when the input sequence is 101. Assume overlapping.

Problem 2
Write a Verilog code for Problem 1
 module seq3_detect_moore(x,clk, y);

 // Moore machine for a sequence 101

 input x, clk;

 output y;
 reg [1:0] state;

 parameter S0=2'b00, S1=2’b10, S2=2’b11, S3=2’b01;

 // Define the sequential block

 always @(posedge clk)
 case (state)

 S0: if (x) state <= S1;

 elsestate <= S0;

 S1: if (x) state <= S1;

 elsestate <= S2;
 S2: if (x) state <= S3;

 else state <= S0;
 S3: if (x) state <= S1;

 else state <= S0;

 endcase
 // Define output during S3
 assign y = (state == S3);

 endmodule

Problem 3
Using JK flip-flops, design a Mealy based sequence detector with one input and one output, which would
generate an output of 1 only when the input sequence is 101. Assume no overlapping.

module seq3_detect_mealy(x,clk, y);

// Mealy machine for a three-1s sequence detection
input x, clk;

output y; reg y;

parameter S0=2'b00, S1=2'b01, S2=2’b11;

// Next state and output combinational logic

// Use blocking assignments "="

always @(x or pstate)

case (pstate)

S0: if (x) begin nstate = S1; y = 0; end

else begin nstate = S0; y = 0; end

S1: if (x) begin nstate = S1; y = 0; end

else begin nstate = S2; y = 0; end

S2: if (x) begin nstate = S0; y = 1; end

else begin nstate = S0; y = 0; end

endcase

// Sequential logic, use nonblocking assignments "<="

always @(posedge clk)

pstate <= nstate;

endmodule

Problem 4
Write a Verilog code for Problem 3. Use default flip-flop given by Verilog.

Problem 5
Using D flip-flops, design a Moore based sequence detector with one input and one output, which would
generate an output of 1 only when the input sequence is 101. Assume overlapping.

Problem 7
Using JK flip-flops, design a Mealy based sequence detector with one input and one output, which would
generate an output of 1 only when the input sequence is 101. Assume overlapping.

