
EGC220
Class Notes
4/28/2023

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

Flip-Flop Excitation Tables

Q(t) Q(t+1) D
0 0 0
0 1 1
1 0 0
1 1 1

Q(t) Q(t+1) T
0 0 0
0 1 1
1 0 1
1 1 0

PRESENT
STATE

NEXT
STATE

J K

Q(t) Q(t+1)
0 0 0 x
0 1 1 x
1 0 x 1
1 1 x 0

PRESENT
STATE

NEXT
STATE

S R

Q(t) Q(t+1)
0 0 0 X
0 1 1 0
1 0 0 1
1 1 x 0

outputs
yk = fk(S)

inputs
x0...xn

Comb.
Logic

n

Flip-
Flops

Comb.
Logic

D Q
n

CLK

S+

inputs
x0...xn

present state S

• Mealy FSM:

S

Comb.
Logic

CLK

Flip-
Flops

Comb.
LogicD Q

S+

n

n

outputs
yk = fk(S, x0...xn)

direct combinational path!

Moore Vs Mealy FSMs: different output generation
• Moore FSM:

next state

1. Evaluate a | b but defer assignment of x
2. Evaluate a^b^c but defer assignment of y
3. Evaluate b&(~c) but defer assignment of z

Blocking vs. Nonblocking Assignments

• Nonblocking assignment: all assignments deferred until all
right-hand sides have been evaluated (end of simulation
timestep)

• Sometimes, as above, both produce the same result.
Sometimes, not!

• Verilog supports two types of assignments within always
blocks, with subtly different behaviors.

• Blocking assignment: evaluation and assignment are immediate
always @ (a or b or c)
begin

x = a | b; 1. Evaluate a | b, assign result to x
y = a ^ b ^ c; 2. Evaluate a^b^c, assign result to y
z = b & ~c; 3. Evaluate b&(~c), assign result to z

end

always @ (a or b or c)
begin
x.<= a | b;
y.<= a ^ b ^ c;
z <= b & ~c;

end 4. Assign x, y, and z with their new values

Finite State Machines Example
 State diagrams are representations of Finite

State Machines (FSM)
Mealy FSM
Output depends on input and state
Output is not synchronized with clock can

have temporarily unstable output
Moore FSM
Output depends only on state

Mealy FSM

Moore
FSM

Problem 1
Using D flip-flops, design a Moore based sequence detector with one input and one output, which would
generate an output of 1 only when the input sequence is 101. Assume no overlapping.

Problem 1
Using D flip-flops, design a Moore based sequence detector with one input and one output, which would
generate an output of 1 only when the input sequence is 101. Assume overlapping.

Problem 2
Write a Verilog code for Problem 1
 module seq3_detect_moore(x,clk, y);

 // Moore machine for a sequence 101

 input x, clk;

 output y;
 reg [1:0] state;

 parameter S0=2'b00, S1=2’b10, S2=2’b11, S3=2’b01;

 // Define the sequential block

 always @(posedge clk)
 case (state)

 S0: if (x) state <= S1;

 elsestate <= S0;

 S1: if (x) state <= S1;

 elsestate <= S2;
 S2: if (x) state <= S3;

 else state <= S0;
 S3: if (x) state <= S1;

 else state <= S0;

 endcase
 // Define output during S3
 assign y = (state == S3);

 endmodule

Problem 3
Using JK flip-flops, design a Mealy based sequence detector with one input and one output, which would
generate an output of 1 only when the input sequence is 101. Assume no overlapping.

module seq3_detect_mealy(x,clk, y);

// Mealy machine for a three-1s sequence detection
input x, clk;

output y; reg y;

parameter S0=2'b00, S1=2'b01, S2=2’b11;

// Next state and output combinational logic

// Use blocking assignments "="

always @(x or pstate)

case (pstate)

S0: if (x) begin nstate = S1; y = 0; end

else begin nstate = S0; y = 0; end

S1: if (x) begin nstate = S1; y = 0; end

else begin nstate = S2; y = 0; end

S2: if (x) begin nstate = S0; y = 1; end

else begin nstate = S0; y = 0; end

endcase

// Sequential logic, use nonblocking assignments "<="

always @(posedge clk)

pstate <= nstate;

endmodule

Problem 4
Write a Verilog code for Problem 3. Use default flip-flop given by Verilog.

Problem 5
Using D flip-flops, design a Moore based sequence detector with one input and one output, which would
generate an output of 1 only when the input sequence is 101. Assume overlapping.

Problem 7
Using JK flip-flops, design a Mealy based sequence detector with one input and one output, which would
generate an output of 1 only when the input sequence is 101. Assume overlapping.

